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Dynamics of a penta-hepta defect in a hexagonal pattern
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~Received 13 September 1999!

The structure and dynamics of a penta-hepta defect in a hexagonal pattern are studied experimentally. The
hexagonal pattern is formed by placing a layer of soap bubbles~diameter;1 mm! on a flat glass plate. We find
that an isolated penta-hepta defect in a bubble raft with free boundary always moves along the direction
perpendicular to the wave vector of the nonsingular mode and towards the nearest boundary. The structure of
the penta-hepta defect is found to be similar to that found in nonequilibrium pattern forming systems.

PACS number~s!: 47.54.1r, 61.72.2y, 47.55.Dz
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This Rapid Communication describes experimental inv
tigations on the structure and dynamics of an isolated pe
hepta defect in a hexagonal pattern formed by a layer
equal sized~diameter;1mm) soap bubbles. Soap bubbles
a certain size range are known to ‘‘crystallize’’ spontan
ously on a flat surface and form a perfect hexagonal pat
@1#. Previous experimental and theoretical work demo
strated that such a soap bubble raft possesses many o
properties of 2D crystalline systems@1–3#. It has been
shown that the interactions between neighboring bubble
described by a van der Waals or capillary attraction an
short-range or ‘‘overlap’’ repulsion@3#. The resulting
potential-distance curve reaches a minimum when the
tance between two neighboring bubbles equals the bu
diameter. That is, the hexagonal lattice formed by so
bubbles corresponds to the minimum energy state. Sev
experiments have demonstrated that properties of disl
tions, grain boundaries, and stress-strain curves that are
cal to a 2D crystalline system exist in soap bubble raft@1,3#.

Recently, attention has been focused on the structure
dynamics of defects in pattern forming systems far fro
equilibrium, specifically in Rayleigh-Be´nard convections
@4–13#. It is found that defects play important roles in th
wave vector selection of these systems. The defect that m
commonly occurred in a 2D hexagonal pattern is the pe
hepta defect~PHD!; a pair of a pentagonal and a heptagon
cell instead of two neighboring hexagonal cells. Experim
tal @5,6# and theoretical@10# work on the structure of PHD
has revealed that a PHD requires that two of the three su
imposed roll patterns of the hexagonal pattern have dislo
tions with opposite phase winding numbers. Later obser
tions of the motion of the PHDs in a Rayleigh-Be´nard
convection@7,8# have inspired a series of theoretical work
the dynamics of the PHDs using the three coupled Ginzbu
Landau equations@11–13#. The mobility of an isolated PHD
in a nonoptimal wave vector hexagonal pattern is calcula
and the interactions of two PHDs are considered.

It needs to be noted that the hexagonal patterns forme
soap bubbles belong to anequilibrium system, while those
observed in Rayleigh-Be´nard convection belong to anon-
equilibrium system. However, both systems are poten
systems@3,10#. We hope that results presented here will p
vide insights for the studies of the motion of defects in no
equilibrium systems. Furthermore, it will stimulate theore
cal work on the structure and dynamics of defects in
crystalline systems.
PRE 611063-651X/2000/61~1!/9~4!/$15.00
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The experiment requires a very simple laboratory set
Soap bubbles are generated with a hypodermic needle
merged in a soap solution. The needle is supplied with ni
gen at a constant pressure provided by an assembly
pressure needle valve, a pressure regulator, and a compr
nitrogen gas tank. The size of the nitrogen filled so
bubbles is adjusted by the needle size and the pressure o
nitrogen. A typical soap solution consists of 28% by weig
doubly deionized and distilled water, 44% regent grade gl
erine, and 28% Miracle Bubbles~Imperial Toy Corporation,
Los Angeles!. The bubbles first float on the surface of th
soap solution and form naturally a perfect hexagonal patt
They are then transferred to a flat glass plate with a pla
spoon. Each transfer contains about a dozen bubbles a
small amount of solution. When the bubbles of the first tra
fer are placed on the glass plate, they form a perfect hexa
nal patch naturally. At each subsequent transfer, the bub
are added carefully to the edges of the perfect hexago
patch and the 2D ‘‘crystal’’ grows spontaneously. Two d
ferent boundary conditions are used in our experiments,
is bounded with a 5.41 cm in diameter plastic ring@Fig. 1~a!#
and the other is with free boundary@Fig. 1~b!#. Defects can
be seen close to the boundary in the bubble raft with bou
ary. In the free boundary case, the entire bubble raft is fre
defects. The bubbles are very uniform in size, as can be s
by the regularity of the bubble raft in Fig. 1. The hexagon
pattern shown in Fig. 1 is a stable state, it will stay motio
less for about an hour. If the raft is left for more than
hour, the bubble size shrinks due to the gas diffusion thro
the wall. In this case, a void will appear near the bounda

Since soap bubbles form a perfect hexagonal pat
spontaneouly, it is thus necessary for us to introduce PH
into the system for the study of defect motion. The proced
for introducing a single defect is as follows. First, a perfe
hexagonal patch is made, as shown in Fig. 1. For the d
shown below, the size of the cell is between 9.0 to 12 cm2,
approximately half the size of the cell shown in Fig. 1~b!.
Second, the perfect hexagonal pattern is raked by a
needle. Multiple defects are created simultaneously of wh
most of them are PHDs. Third, a single PHD near the cen
of the cell is isolated by getting rid of the unwanted defec
This is usually done by releasing the stress around the
wanted defects using a wet needle. Occasionally, a sin
PHD can be created by merging two line defects. Very oft
R9 ©2000 The American Physical Society
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we end up with a perfect hexagonal pattern again and
whole process needs to be repeated. In the free boun
case@Fig. 1~b!#, the isolated PHD is not stable; it move
immediately to its nearest boundary once it is created. T
demonstrates that the bubble raft without constraint pre
to stay in its lowest energy state, which is the perfect h
agonal pattern@3#. In the rigid boundary case@Fig. 1~a!#, the
isolated PHD near the center of the cell is often motionles
the beginning and eventually moves to the boundary. In
case, the motion of the defect is caused by the interaction
the isolated defect near the center with the defects near
boundary. The motion of the isolated PHD is complicated
the random distribution of the defects around the bound
In the other case, a void is formed after a few hours
waiting due to the bubble size shrinkage, and the defec
ways chose to move towards the void in a similar way as
a cell with free boundary. It moves along the direction p
pendicular to the wave vector of nonsingular mode. In

FIG. 1. Perfect hexagonal patterns formed by 0.108 cm in
ameter soap bubbles.~a! The bubble raft bounded with a 5.41 cm
diameter plastic ring.~b! The bubble raft with free boundary.
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following, we focus on studying the motion of a single defe
in a hexagonal pattern withfree boundary.

Images of the cell are recorded for the study of the def
motion using a super VHS recorder~JVC, BRS822DXU!. A
time series of 30 to 60 images that cover the central por
of the cell is digitized from the video tape for further da
analysis. Two consecutive images are 1s apart. Figure 2~a!
shows a typical image of an isolated PHD. It consists of 2
pixel
3 256 pixel, which corresponds to a viewing area of 2.13
3 2.13 cm. The bubble size is 0.108 cm. The pair of pe
tagonal and heptagonal cells are marked with two white b
in Fig. 2~a!. Figure 2~b! is the gray scale rendition of th
modulus uA(k)u2 of the Fourier transform ofA(x), where
A(x) is the gray scale of the hexagonal pattern shown in F
2~a!. The six dots indicate the locations of the wave vect
6k1, 6k2, 6k3 of the three superimposed roll patterns.k1,
k2, andk3 are oriented 120° with respect to each other co
terclockwise, a convention used in previous publicatio
@5,13#. Each roll pattern is reconstructed by performing
inverse fourier transform ofA(k) using one pair of peaks
For example, Fig. 2~c1! is obtained by inverse Fourier trans
forming A(k) after one pair of peaks ofA(k) at locations
6k1 are singled out using tanh windows@14#. The roll pat-
tern with wave vectors6k1 is defect free@Fig. 2~c1!#, while
the second and third roll patterns with wave vectors6k2 and
6k3 @Fig. 2~c2! and 2~c3!# contain a defect each. A standa
demodulation technique is used here to study the structur
the defect@5#. As we know, the gray scaleA(x) of a nearly
perfect hexagonal pattern can be written as

A~x!5(
j 51

3

@Âj~x!eikj•x1c.c#. ~1!

Here Âj (x)( j 51,2,3) is the slow varying amplitude of on
of the three superimposed roll patterns. These three com
amplitudes contain the essential information about the
fect. To obtainÂj (x), we first shift the peak ofA(k) at kj to
the origin, and then do a low pass filtering~tanh window!
@14# around the origin. The inverse Fourier transform of t
filtered A(k) gives us Âj (x). The phase of theÂj (x) is
shown in Figs. 2~d1!–2~d3!. No singularity is observed in the
phase diagram of the first roll pattern@Fig. 2~d1!#, while
singularity of topological winding number1 or 21 is
shown at the core of the defect in the phase diagram of
second or third roll pattern@Figs. 2~d2! and 2~d3!#. The defi-
nition of the phase winding number can be found in Refs.@9#

and@13#. The modulusuÂj u2 of the complex amplitude dem
onstrates a minimum at the core of the defect for the sec
and the third roll patterns. Gray scale rendition ofuÂ2(x)u2 is
shown in Fig. 2~e!. The above shows that the structure of t
PHD in a soap bubble raft presents similar characteristic
that observed in Rayleigh-Be´nard convections@5,8#.

The trajectory of the PHD is shown in Fig. 3 and it
extracted from a time series of 32 images. Thex-y coordi-
nates of the PHDs are determined by locating the positi
of the singularities in the phase diagrams such as the
shown in Fig. 2~d2! using Global Lab Image software~Data
Translation!. As is seen, the positions of the singularities a
sharply defined in the phase diagrams@Figs. 2~d2! and
3~d3!#. The error of each measured position is61 pixel,

i-
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FIG. 2. ~a! Hexagonal pattern with an isolated PHD formed
soap bubbles of diameter 0.108 cm. The pair of pentagonal
heptagonal cells are marked with two white bars.~b! Modulus
uA(k)u2 of the Fourier transform of the hexagonal pattern@Fig.
2~a!#. Linear gray scale is shown at the lower right corner. Note
inverse gray scale.~c1!–~c3! Three roll patterns with wave vector
k1, k2, andk3. The arrows in~c1! indicate the direction and trajec
tory of the PHD. The two ends of each arrow are determined by
locations of the defects of 5s apart.~d1!–~d3! Gray scale renditions

of the phases of the complex amplitudesÂj (x)( j 51,2,3). Linear
gray scale is shown at the bottom.~e! Gray scale rendition of the

square root ofuÂ2(x)u2. Linear gray scale is shown on the right sid
of the image.
which corresponds to60.0084 cm. The trajectory of the
PHD is consistently straight in our experiments. The int
esting finding here is that the isolated PHD always mo
along the direction perpendicular to the wave vector of
nonsingular mode (k1 in our experiment! and towards the
nearest boundary. In other words, the PHDs always prefe
climb along the defect free rolls. This is more clearly de
onstrated by the arrows in Fig. 2~c1!, in which the two ends
of the arrows are determined by the locations of the PHDs
5s apart. The motion of the defect in the second or the th
roll pattern consists of both a glide and a climb motio
Movies of the defect motion can be seen at website htt
mwu.phys.oxy.edu/soap-bubble/soap.html. The direction
the trajectory is also determined quantitatively using
slope of the trajectory from a linear fit to the data in Fig.
The angle between the trajectory and the1x axis is obtained
to be243.1°. The direction of the wave vectork1 is deter-
mined using the location of the peak atk1 in Fig. 2~b!, which
gives us an angle of 48.4°~betweenk1 and the1x axis!. The
angle between the direction of the trajectory and the w
vectork1 for this particular run is thus 91.5°. Summarizin
the seven experimental runs, we obtain the angle between
wave vectork1 and the trajectory to be 90.862.0°.

To investigate the velocity of the PHD, we plot the di
tance that the PHD has traveled since its creation versus
~Fig. 4!. The slope of that gives us the speed of the def
motion. It needs to be noted that the velocity data presen
here is taken from images of the central portion of the c
There is a few seconds duration of transient motion bef
the PHD reaches a constant speed~as shown in Fig. 4!, and it
speeds up near the boundary of the cell. In this particular
the velocity is obtained to be 0.032560.005 cm/s. The spee
of the PHD is in the range of 0.0141–0.0330 cm/s for t
seven experimental runs mentioned above. The range o
speed could be due to the slight variations of the thicknes
the fluid layer underneath the bubbles. We found qual
tively that the PHD moves faster when the layer is thick

nd

e

e

FIG. 3. Trajectory of the PHD. The origin~0,0! of the plot
corresponds to the lower left corner of the image.x andy axes are
the (x,y) coordinates of the PHD.s/d. Data points determined
using phase diagram of the roll pattern with wave vectork2/k3.
Dashed and solid lines are obtained from the linear fit tos andd

data points, respectively.
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however, the current experimental setting does not allow
to change the layer thickness quantitatively. Cautions h
been taken to keep the layer thickness a constant from
run to the other. A new apparatus is being contemplated
further quantitative study of the speed of the PHD.

A full theoretical explanation of the experimental resu
presented above is still lacking. Here, we would like to a
dress two issues that are pertinent to the problem. First, w
is the driving force behind the PHD motion? Theoretic
work on nonequilibrium systems using the coupl
Ginzburg-Landau~GL! equations@12# has demonstrated tha
the driving force can be the Peach-Ko¨hler force, which is due
to the deviation of the wave vector from its optimal valu
The GL theory finds that an isolated PHD movesparallel to
the wave vector of nonsingular mode in a system wherek2
andk3 are equal in magnitude and nonoptimal. Ifk2 andk3
are optimal, the PHD stays put. These results differ from
finding that the PHD always movesperpendicular to the

FIG. 4. Distance of the PHD from its starting point vs tim
s/d, Data points determined using the phase diagram of the
pattern with wave vectork2 /k3. Solid lines are obtained from linea
fits to the experimental data.
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wave vector of nonsingular mode. In our experiments,
magnitudes ofk2 and k3 are equal in some of the runs an
differ less than 5% in others. This suggests that the
theory does not apply to our system and the driving force
the PHD motion comes from other sources. Now, the f
that a PHD leaves the bubble raft spontaneously sugg
that there is a free energy associated with it, that work m
be done to move the PHD into a perfect hexagonal patt
This indicates that the driving force can be the poten
force ~elastic force, for instance! associated with the free
energy of the system, and it takes a minimum amount
work for the defect to climb along the defect free rolls. T
direction of the PHD motion is further finalized by th
boundary. The PHD always moves towards the nea
boundary. The second issue concerns the effect of visc
force on the speed of the PHD. We found that the PH
moves faster in a bubble raft with a thicker fluid layer u
derneath the bubbles. It is reasonable to suggest that the
energy of the system should include contributions from b
the elastic force of the bubble raft and the viscous force
to the fluid layer underneath.

To summarize, we find that~i! an isolated PHD moves
along the direction perpendicular to the wave vector of
nonsingular mode and towards the nearest boundary in a
with free boundary;~i! an isolated PHD stays motionless in
cell with rigid boundary.
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to thank Dr. Tsimring on various email communications, e
pecially on the theoretical explanations of the results p
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