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Dynamics of a penta-hepta defect in a hexagonal pattern
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The structure and dynamics of a penta-hepta defect in a hexagonal pattern are studied experimentally. The
hexagonal pattern is formed by placing a layer of soap bulidlameter~1 mm) on a flat glass plate. We find
that an isolated penta-hepta defect in a bubble raft with free boundary always moves along the direction
perpendicular to the wave vector of the nonsingular mode and towards the nearest boundary. The structure of
the penta-hepta defect is found to be similar to that found in nonequilibrium pattern forming systems.

PACS numbes): 47.54+r, 61.72-y, 47.55.Dz

This Rapid Communication describes experimental inves- The experiment requires a very simple laboratory setup.
tigations on the structure and dynamics of an isolated pentéSoap bubbles are generated with a hypodermic needle sub-
hepta defect in a hexagonal pattern formed by a layer oferged in a soap solution. The needle is supplied with nitro-
equal sizeddiameter~1mm) soap bubbles. Soap bubbles i”gen at a constant pressure provided by an assembly of a

a clertain siﬂzet ranfge are (;«;own to “cfrystt?]IIize” sp(?nta?{e-ﬁressure needle valve, a pressure regulator, and a compressed
ously on a fiat surface and form a perfect hexagonal pater itrogen gas tank. The size of the nitrogen filled soap
[1]. Previous experimental and theoretical work demons

strated that such a soap bubble raft possesses many of thbbleS N adju_sted by the negdle size_ and the pressure_of the
properties of 2D crystalline systemfd—3. It has been nitrogen. A typical soap solution consists of 28% by weight

shown that the interactions between neighboring bubbles idoubly deionized and distilled water, 44% regent grade glyc-
described by a van der Waals or capillary attraction and &£fine, and 28% Miracle Bubbleggmperial Toy Corporation,
short-range or *“overlap” repulsion[3]. The resulting Los Angeleg. The bubbles first float on the surface of the
potential-distance curve reaches a minimum when the dissoap solution and form naturally a perfect hexagonal pattern.
tance between two neighboring bubbles equals the bubbf€hey are then transferred to a flat glass plate with a plastic
diameter. That is, the hexagonal lattice formed by soagpoon. Each transfer contains about a dozen bubbles and a
bubbles corresponds to the minimum energy state. S_everg&a” amount of solution. When the bubbles of the first trans-
experiments have demonstrated that properties of dislocgg; gre placed on the glass plate, they form a perfect hexago-
tions, grain boundaries, and stress-strain curves that are YRYal patch naturally. At each subsequent transfer, the bubbles

cal to a 2D crystalline system exist in soap bubble [&f3].
Recently, attention has been focused on the structure afd® added carefully to the edges of the perfect hexagonal

dynamics of defects in pattern forming systems far frompa'[ch and the 2D cry;tal grows sp_ontaneously: Two dif-
equilibrium, specifically in Rayleigh-Beard convections ferent bounda_lry condltlons_ are used in our_expe_rlments, one
[4-13. It is found that defects play important roles in the IS Pounded with 2 5.41 cm in diameter plastic rifgg. 1(a)]
wave vector selection of these systems. The defect that mo@fld the other is with free boundalfig. 1(b)]. Defects can
Comm0n|y occurred in a 2D hexagona| pattern is the pentabe seen close to the boundary in the bubble raft with bound-
hepta defectPHD); a pair of a pentagonal and a heptagonalary. In the free boundary case, the entire bubble raft is free of
cell instead of two neighboring hexagonal cells. Experimendefects. The bubbles are very uniform in size, as can be seen
tal [5,6] and theoretical10] work on the structure of PHD by the regularity of the bubble raft in Fig. 1. The hexagonal
has revealed that a PHD requires that two of the three supepattern shown in Fig. 1 is a stable state, it will stay motion-
imposed roll patterns of the hexagonal pattern have dislocdess for about an hour. If the raft is left for more than an
tions with opposite phase winding numbers. Later observahour, the bubble size shrinks due to the gas diffusion through
tions of the motion of the PHDs in a Rayleigh#®ed the wall. In this case, a void will appear near the boundary.
convection 7,8] have inspired a series of theoretical work on ~ Since soap bubbles form a perfect hexagonal pattern
the dynamics of the PHDs using the three coupled Ginzburgspontaneouly, it is thus necessary for us to introduce PHDs
Landau equationgl1-13. The mobility of an isolated PHD into the system for the study of defect motion. The procedure
in a nonoptimal wave vector hexagonal pattern is calculatedor introducing a single defect is as follows. First, a perfect
and the interactions of two PHDs are considered. hexagonal patch is made, as shown in Fig. 1. For the data
It needs to be noted that the hexagonal patterns formed bshown below, the size of the cell is between 9.0 to 1Z,cm
soap bubbles belong to avuilibrium system, while those approximately half the size of the cell shown in Figb)l
observed in Rayleigh-Beard convection belong to mon-  Second, the perfect hexagonal pattern is raked by a wet
equilibrium system. However, both systems are potentiaineedle. Multiple defects are created simultaneously of which
systemg3,10]. We hope that results presented here will pro-most of them are PHDs. Third, a single PHD near the center
vide insights for the studies of the motion of defects in non-of the cell is isolated by getting rid of the unwanted defects.
equilibrium systems. Furthermore, it will stimulate theoreti- This is usually done by releasing the stress around the un-
cal work on the structure and dynamics of defects in 2Dwanted defects using a wet needle. Occasionally, a single
crystalline systems. PHD can be created by merging two line defects. Very often,
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following, we focus on studying the motion of a single defect
in a hexagonal pattern witfiee boundary

Images of the cell are recorded for the study of the defect
motion using a super VHS recordeiVC, BRS822DXU). A
time series of 30 to 60 images that cover the central portion
of the cell is digitized from the video tape for further data
analysis. Two consecutive images are dpart. Figure @)
shows a typical image of an isolated PHD. It consists of 256
pixel
X 256 pixel, which corresponds to a viewing area of 2.13 cm
X 2.13 cm. The bubble size is 0.108 cm. The pair of pen-
tagonal and heptagonal cells are marked with two white bars
in Fig. 2(a). Figure 2b) is the gray scale rendition of the
modulus|A(K)|? of the Fourier transform of\(x), where
A(Xx) is the gray scale of the hexagonal pattern shown in Fig.
2(a). The six dots indicate the locations of the wave vectors
*kq, =k, *ksof the three superimposed roll patterks,
ko, andk, are oriented 120° with respect to each other coun-
terclockwise, a convention used in previous publications
[5,13]. Each roll pattern is reconstructed by performing an
inverse fourier transform of\(k) using one pair of peaks.
For example, Fig. @1) is obtained by inverse Fourier trans-
forming A(k) after one pair of peaks oA(k) at locations
+k; are singled out using tanh windoW$4]. The roll pat-
tern with wave vectors:k; is defect fredFig. 2(c1)], while
the second and third roll patterns with wave vectais, and
+ k3 [Fig. 2(c2) and 2c3)] contain a defect each. A standard
demodulation technique is used here to study the structure of
the defec{5]. As we know, the gray scal&(x) of a nearly
perfect hexagonal pattern can be written as

3
A(x)=21 [A;(x)e"*+c.c. 1)
=

AALL LY

by
'
4
*e®

HereAj(x)(j =1,2,3) is the slow varying amplitude of one
of the three superimposed roll patterns. These three complex
amplitudes contain the essential information about the de-

fect. To obtainAJ-(x), we first shift the peak oA(k) atk; to
the origin, and then do a low pass filterifiganh window
FIG. 1. Perfect hexagonal patterns formed by 0.108 cm in dil14] around the origin. The inverse Fourier transform of the
ameter soap bubbleéa) The bubble raft bounded with a 5.41 cm filtered A(k) gives usAj(x). The phase of theA;(x) is
diameter plastic ring(b) The bubble raft with free boundary. shown in Figs. &@1)—2(d3). No singularity is observed in the
phase diagram of the first roll pattefirig. 2(d1)], while

we end up with a perfect hexagonal pattern again and th&ingularity of topological winding number- or —1 is
whole process needs to be repeated. In the free bounda hown at the core of the defect in the phase diagram of the

case[Fig. 1(b)], the isolated PHD is not stable; it moves Second or third roll patterfFigs. 2d2) and 2d3)]. The defi-

immediately to its nearest boundary once it is created. Thigition of the phase winding number can be found in REg$.
demonstrates that the bubble raft without constraint prefergnd[13]. The modulugA,|? of the complex amplitude dem-

to stay in its lowest energy state, which is the perfect hexonstrates a minimum at the core of the defect for the second
agonal patterfi3]. In the rigid boundary cadéig. 1(a)], the  and the third roll patterns. Gray scale renditiorj &(x)|? is
isolated PHD near the center of the cell is often motionless ashown in Fig. 2e). The above shows that the structure of the
the beginning and eventually moves to the boundary. In on®HD in a soap bubble raft presents similar characteristics to
case, the motion of the defect is caused by the interactions dhat observed in Rayleigh-Bard convection$5,8].

the isolated defect near the center with the defects near the The trajectory of the PHD is shown in Fig. 3 and it is
boundary. The motion of the isolated PHD is complicated byextracted from a time series of 32 images. g coordi-

the random distribution of the defects around the boundarynates of the PHDs are determined by locating the positions
In the other case, a void is formed after a few hours ofof the singularities in the phase diagrams such as the one
waiting due to the bubble size shrinkage, and the defect akhown in Fig. 2d2) using Global Lab Image softwak®ata
ways chose to move towards the void in a similar way as inTranslation. As is seen, the positions of the singularities are
a cell with free boundary. It moves along the direction per-sharply defined in the phase diagraffSigs. 2d2) and
pendicular to the wave vector of nonsingular mode. In the3(d3)]. The error of each measured position-isl pixel,
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FIG. 3. Trajectory of the PHD. The origif0,0) of the plot
corresponds to the lower left corner of the imagendy axes are
the (x,y) coordinates of the PHDO/@. Data points determined
using phase diagram of the roll pattern with wave vedtghk,.
Dashed and solid lines are obtained from the linear fibtand ®
data points, respectively.

which corresponds tat0.0084 cm. The trajectory of the
PHD is consistently straight in our experiments. The inter-
esting finding here is that the isolated PHD always moves
along the direction perpendicular to the wave vector of the
nonsingular model(; in our experimentand towards the
nearest boundary. In other words, the PHDs always prefer to
climb along the defect free rolls. This is more clearly dem-
onstrated by the arrows in Fig(&), in which the two ends

of the arrows are determined by the locations of the PHDs of
5s apart. The motion of the defect in the second or the third
roll pattern consists of both a glide and a climb motion.
Movies of the defect motion can be seen at website http://
mwu.phys.oxy.edu/soap-bubble/soap.html. The direction of
the trajectory is also determined quantitatively using the
slope of the trajectory from a linear fit to the data in Fig. 3.

0 Arbit. Unit 64 The angle between the trajectory and the axis is obtained
SellEtGERIE: 2h to be —43.1°. The direction of the wave vectkj is deter-
B mined using the location of the peaklgtin Fig. 2(b), which
‘T Scale for Fig. 2d(1,23) = gives us an angle of 48.4betweerk, and the+x axis). The
angle between the direction of the trajectory and the wave
‘ [ vectork, for this particular run is thus 91.5°. Summarizing
0 Arbit. Unit 12 the seven experimental runs, we obtain the angle between the

J—
| .

Scale for Fig. 2e wave vectork, and the trajectory to be 90t#&.0°.
To investigate the velocity of the PHD, we plot the dis-

FIG. 2. (a) Hexagonal pattern with an isolated PHD formed by tance that the PHD has traveled since its creation versus time
soap bubbles of diameter 0.108 cm. The pair of pentagonal antFig. 4). The slope of that gives us the speed of the defect
heptagonal cells are marked with two white bafis) Modulus ~ motion. It needs to be noted that the velocity data presented
|A(k)|? of the Fourier transform of the hexagonal patt¢fig.  here is taken from images of the central portion of the cell.
2(a)]. Linear gray scale is shown at the lower right corner. Note theThere is a few seconds duration of transient motion before
inverse gray scalgc1)—(c3) Three roll patterns with wave vectors the PHD reaches a constant spéasishown in Fig. % and it
ki, kz, andks. The arrows in(cl) indicate the direction and trajec- speeds up near the boundary of the cell. In this particular run,
tory of the PHD. The two ends of each arrow are determined by thehe velocity is obtained to be 0.032%.005 cm/s. The speed
locations of the defects ofsbapart.(d1)-(d3) Gray scale renditions  of the PHD is in the range of 0.0141-0.0330 cm/s for the
of the phases of the complex amplitudé;(x)(j =1,2,3). Linear  seven experimental runs mentioned above. The range of the
gray scale is shown at the bottori@) Gray scale rendition of the speed could be due to the slight variations of the thickness of
square root ofA,(x)|?. Linear gray scale is shown on the right side the fluid layer underneath the bubbles. We found qualita-
of the image. tively that the PHD moves faster when the layer is thicker;
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1 wave vector of nonsingular mode. In our experiments, the
osk magnitudes ok, and k5 are equal in some of the runs and
2 differ less than 5% in others. This suggests that the GL
2061 theory does not apply to our system and the driving force of
g o4l the PHD motion comes from other sources. Now, the fact
Z that a PHD leaves the bubble raft spontaneously suggests
02| that there is a free energy associated with it, that work must
.® . . . . be done to move the PHD into a perfect hexagonal pattern.
00 5 10 s 20 25 30 This indicates that the driving force can be the potential

1(s) force (elastic force, for instangeassociated with the free
energy of the system, and it takes a minimum amount of
FIG. 4. Distance of the PHD from its starting point vs time. work for the defect to climb along the defect free rolls. The
O/®@, Data points determined using the phase diagram of the rolfjirection of the PHD motion is further finalized by the
pattern with wave vectdr,/ks. Solid lines are obtained from linear boundary. The PHD always moves towards the nearest
fits to the experimental data. boundary. The second issue concerns the effect of viscous

) . force on the speed of the PHD. We found that the PHD
however, the current experimental setting does not allow Ug,qyes faster in a bubble raft with a thicker fluid layer un-

to change the layer thickness quantitatively. Cautions havgerneath the bubbles. It is reasonable to suggest that the free
been taken to keep the layer thickness a constant from ong,erqy of the system should include contributions from both

run to the other. A new apparatus is being contemplated foje g|astic force of the bubble raft and the viscous force due
further quantitative study of the speed of the PHD. to the fluid layer underneath.

A full theoretical explanation of the experimental results 14 summarize. we find thaii) an isolated PHD moves

presented above is still lacking. Here, we would like t0 ad-g5ng the direction perpendicular to the wave vector of the
dress two issues that are pertinent to the problem. First, Wh"ﬁonsingular mode and towards the nearest boundary in a cell

is the driving force behind the PHD motion? Theoretical it free boundary(i) an isolated PHD stays motionless in a
work on nonequilibrium systems using the coupledqq| with rigid boundary.

Ginzburg-LandayGL) equationg12] has demonstrated that
the driving force can be the Peacher force, which is due The authors would like to thank Professor Guenter Ahlers
to the deviation of the wave vector from its optimal value. for insightful discussions on the subject. M. Wu would like
The GL theory finds that an isolated PHD moyesallelto  to thank Dr. Tsimring on various email communications, es-
the wave vector of nonsingular mode in a system where pecially on the theoretical explanations of the results pre-
andks are equal in magnitude and nonoptimalkifandk;  sented above. This work is supported by the Petroleum Re-
are optimal, the PHD stays put. These results differ from ousearch FundGrant No. ACS-PRF# 32904-GB%nd the
finding that the PHD always moveserpendicularto the  Research CorporatiofContract No. CC4612
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